Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
نویسندگان
چکیده
Multifunctional nanomedicine holds considerable promise as the next generation of medicine that allows for targeted therapy with minimal toxicity. Most current studies on Nanoparticle (NP) drug delivery consider a Newtonian fluid with suspending NPs. However, blood is a complex biological fluid composed of deformable cells, proteins, platelets, and plasma. For blood flow in capillaries, arterioles and venules, the particulate nature of the blood needs to be considered in the delivery process. The existence of the cell-free-layer and NP-cell interaction will largely influence both the dispersion and binding rates, thus impact targeted delivery efficacy. In this paper, a particle-cell hybrid model is developed to model NP transport, dispersion, and binding dynamics in blood suspension. The motion and deformation of red blood cells is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of red blood cells, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.
منابع مشابه
Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery
Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...
متن کاملInvestigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells
In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...
متن کاملComputational simulations of nanoparticle transport in a three-dimensional capillary network
Objective(s): Multifunctional nanomedicine is the new generation of medicine, which is remarkably promising and associated with the minimum toxicity of targeted therapy. Distribution and transport of nanoparticles (NPs) in the blood flow are essential to the evaluation of delivery efficacy. Materials and Methods: In the present study, we initially designed a phantom based on Murray’s mini...
متن کاملInfluence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملInfluence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 8 شماره
صفحات -
تاریخ انتشار 2011